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About this document
This document provides an overview about the features 
and cryptographic protocols of the product for a technical 
audience. Wire has an extensive online documentation 
available under docs.wire.com which describes the product, 
architecture and even installation of the backend 
components in detail.

Open Source
All security-critical parts of Wire are available on Github 
under an GPLv3 license. All clients and the backend can 
be downloaded, inspected and built by anyone. All parts 
for running a fully functional deployment for hobbyist use 
and security researchers are available on Github. The 
Wire backend supports reproducible builds. Parts of the 
codebase that would allow or help our competitors to copy 
Wires business, are not open source.

Introduction
Wire is a complete end-to-end encrypted messaging 
platform. Users can collaborate and organize their chats 
in groups, send files to each other, and have audio/video 
calls. User accounts are organized in the form of Teams, 
while each user can only be part of one Team.

Wire’s server component, the backend, can be used 
as-a-service or self-hosted - in a private cloud or even in 
environments disconnected from the Internet. Federation 
with other backends is also possible. Wire client applications 
are available for Android, iOS, Windows, macOS, Linux, as 
well as for web browsers.

https://docs.wire.com/latest/
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Wire-specific terminology
This section introduces Wire-specific terminology in 
alphabetical order.

Backend The Backend of a Wire instance describes all 
components providing the Wire service. Wire clients contact 
the backend to exchange data with other clients. The backend 
also provides data exchange between its own clients and 
clients of federated domains.

Client Each device of a user that is logged into the user’s 
account acts as a client. A client is the user interface to 
securely communicate with other users. One user can have 
multiple clients, which all have a synchronized view on the 
conversations of a user. Thus, when sending chat messages, 
other users are usually addressed as a set of clients.

Client-ID Each client has an identity, its Client-ID, randomly 
assigned by the backend. A fully qualified client-ID consists 
of user-ID, client-ID, and backend domain.

Conversation An encrypted data exchange channel between 
two or more users is called a conversation. A conversation 
exclusively between two users is called one-to-one 
conversation.

Domain An instance of a backend is called a domain and 
is addressable via its domain name.

Federation Different Wire backends can be connected 
through federation to allow users from one domain to 
communicate with users from other directly federated 
domains.

Group A set of multiple users in a conversation are called 
a group. Members of a group can be added and removed.

Team Teams act as an organizational unit on a backend. 
Multiple users can be managed in form of teams. Each user 
on a backend can only be part of one team.

User Through the login process users authenticate 
themselves against the backend. A user can have multiple 
clients to run Wire on different devices.

Identity management-specific terminology
ACME Automatic Certificate Management Environment. 
A protocol defined in RFC 8555 for automated certificate 
enrollment, renewal, and revocation. It defines ACME server 
and ACME client roles.

Certificate Authority (CA) A certificate issuer authoritative 
for a specific group or type of subjects, often scoped within 
a single Internet domain.

Certificate Issuance The general process of obtaining a valid 
certificate (includes enrollment and renewal).

Certificate Revocation A document signed by a relevant CA 
declaring that a previously issued, and otherwise valid, 
certificate is no longer trustworthy.

Certificate Signing Request (CSR) A self-signed document 
used by a subject to request a certificate. A piece of 
information asserted (claimed) about an entity.

Credentials An assertion of identity (and optionally other 
identity-related properties) that is cryptographically verifiable. 
Certificates, W3C verifiable credentials, and W3C verifiable 
presentations are all forms of a credential.

CRL Certificate Revocation List. A list of revoked certificates 
typically provided by a certificate authority or other interested 
party (for example browser vendors and public interest 
foundations often provide CRLs for Internet domain name 
certificates).

DPoP OAuth 2.0 Demonstrating Proof-of-Possession at the 
Application Layer, RFC 944. A specification for constructing 
proofs and authorization tokens which prove possession of 
a private key.

Terminology
This section intends to clarify the meaning of some ordinary 
terms which could be misinterpreted by the reader, but 
does not intend to provide full definitions of all concepts 
and features used. Such definitions are introduced 
where needed.

https://www.rfc-editor.org/info/rfc8555
https://www.rfc-editor.org/info/rfc9449
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Identity Authority* A service which is authoritative for 
identities in a specific area of control. In the context of this 
document, specifically the combination of certificate authority 
and ACME server.

Identity Provider (IdP) A service which provides a source 
for validating user identity in a federated identity system, for 
example using OAuth/OIDC and/or SAML.

JOSE JSON Object Signing and Encryption. A set of standards 
including JSON Web Signing (JWS) and JSON Web 
Encryption (JWE).

JWT JSON Web Token. Pronounced “jot”. A format for 
conveying authorization tokens using JWS. Consists of a 
JOSE header section, a “claims section”, and a signature.

OAuth The Open Authorization family of standards, very 
popular for user authentication. Version 2.0 of the framework 
is defined in RFC 6749.

OIDC OpenID Connect. A set of profiles of OAuth 2.0 defined 
at the OpenID Specifications. OIDC has largely replaced 
SAML for new SSO applications.

Relying Party (RP) OAuth 2.0 client application requiring 
end-user authentication and claims from an OpenID provider.

Self-signed Certificate A certificate where the subject and 
the issuer are the same entity.

SSO Single Sign-On An authentication scheme that allows 
a user to log in with a single ID to any of several related, yet 
independent, software systems.

SubjectAltName (SAN) SAN is the subject’s alternative name 
fields in X.509. This field has effectively replaced the subject 
field as the SAN can be used to clearly express different 
types of subjects, including URIs, email addresses, and 
DNS names. Multiple identifiers are permitted in the SAN.

X.509 certificate A specific format of a certificate. A 
certificate is a document that asserts that a specific public 
key is associated with the subject. The certificate is signed 
by the issuer with a specific signature algorithm and valid 
for a particular time period. Certificates outside the validity 
period are either not yet valid or expired. In the context of this 
document “certificate” will always mean an X.509 certificate.

https://www.rfc-editor.org/info/rfc6749
https://openid.net/developers/specs/
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MLS-specific terminology
Authentication Service (AS) MLS-specific term from RFC 
9420. Authentication in MLS is only defined as an abstract 
functionality. An authentication service has to provide two 
functions:
1.	 Issue credentials, which provide bindings between 

identities and signature key pairs, to clients.
2.	 Provide functionality to allow a member to verify a 

credential of group members.
In Wire’s implementation, the Delivery Service and 
*Authentication Service* are one component: the Wire 
backend.
Delivery Service (DS) MLS-specific term from RFC 9420. 
The Delivery Service routes MLS messages among the 
participants in the protocol.

Security-specific terminology
Post-Compromise Security (PCS)
The notion of Post-Compromise Security was introduced 
by Cohn-Gordon et al. Intuitively, a protocol provides PCS 
if, after a full state compromise, the involved clients can 
recover in such a way that the adversary cannot decrypt 
future messages.In their definition, “full state compromise” 
refers to an adversary taking a snapshot of the client’s state.

Without further assumptions, achieving PCS is only possible 
if the adversary only observes traffic passively during a 
period of time after a full state compromise.PCS is typically 
achieved if the compromised client uses randomly sampled 
key material after the compromise, to either negotiate a 
new unrelated key or to inject entropy into some 
previously agreed-upon key and communicating this action 
to its partner.

Forward Secrecy (FS)
Forward Secrecy is the counterpart to PCS, i.e. intuitively 
a protocol provides Forward Secrecy if, with a full state 
compromise, the adversary cannot compute keys 
exchanged in past protocol sessions. This means that 
messages sent at a certain point in time are secure in the 
face of later compromise of a group member.

https://datatracker.ietf.org/doc/html/rfc9420
https://datatracker.ietf.org/doc/html/rfc9420
https://datatracker.ietf.org/doc/html/rfc9420
https://eprint.iacr.org/2016/221
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Architecture overview
Below architecture diagram shows an example architecture 
of a Wire on-prem installation that leverages the ID Shield 
feature for automated end-to-end identity verification.

Overview of the Wire platform’s components with a focus on 
the backend (server-side parts). The blue box denotes the 
core Wire server, the green box the optional CA used for 
identity verification, and the TURN/SFT servers at the top 
are used for calling support.
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Registration
Registration on Wire involves three steps:
1.	 User registration - create the user account on the backend
2.	 Client registration - make a client known to the backend
3.	 Push token registration - allow the client to receive 

notifications

User Registration
A user must only register once, in order to create the account.

Registration by E-Mail
In order to create the user account, the backend server 
verifies that the client has control over the given e-mail 
address.

Registration by e-mail requires a profile name and a valid 
e-mail address. To verify the e-mail address, the server 
generates a random verification code c and sends it to the 
given e-mail address. The server only allows 3 attempts of 
the client to send the correct verification code. Afterwards, 
the code is automatically invalidated and a new code needs 
to be requested. Verification codes expire after 14 days. Upon 
successful registration, the client receives a randomly 
generated user ID (UUID v4) and an authentication cookie.

Registration by SCIM
User accounts can also be added automatically using SCIM 
(System for Cross-domain Identity Management, RFC 7643. 
The SCIM client software must be authorized by a Team 
Owner to use the SCIM-API in order to create and update 
user account information.

User Login
Wire supports user login by account password or SSO 
(Single Sign On) via SAML (Security Assertion Markup 
Language). Details on this can be found in the Login section.

Passwords
Passwords are not stored in plain text on the server.Instead, 
upon login they are passed into the `scrypt` key derivation 
function with the parameters $N = 2^{14}, r = 8, p = 1$ and a 
random salt $s \\in R [0, 2^{256} - 1] $. The resulting hashes 
are stored along with the salt and the parameters in the form 
$log_2 (N) || r || p || base64(s) || base64(hash)$. Password 
hashing can also be configured to use argon2id instead of 
scrypt. Clients only keep passwords in volatile memory.

Fetch E-Mail

E-mail Response

Register 
(Profile name, E-mail address)

E-mail (c)

c  [0,2     -1]192

(UUID, Cookie)

c

ServerClient E-mail Server

https://datatracker.ietf.org/doc/html/rfc7643
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Password Policy
The default password complexity (as enforced by clients) 
is as follows:
→	 at least 8 characters long
→	 at least 1 lowercase letter
→	 at least 1 uppercase letter
→	 at least 1 number
→	 at least 1 special character

Further User Data
The following additional data is stored by the backend:
→	 Locale: An IETF language tag representing the user’s 

preferred language.
→	 Accent Color: A numeric constant.
→	 Picture: Metadata about a previously uploaded public 

profile picture, including a unique ID, dimensions and 
a tag.

→	 Cookie Label: A label to associate with the user 
token that is returned as an HTTP cookie upon 
successful registration.

→	 App settings: Preferences such as emoji setting, link 
preview setting, sound alert setting are stored.

If your are interested in more details about Wire’s data 
privacy, have a look at the Wire Privacy Whitepaper that 
summarizes data processed by Wire clients and backends. 

Client Registration
After creating an account, a user can register Wire client 
applications. Client registration is required in order to 
participate in the exchange of end-to-end encrypted content. 
The concept of user accounts is less relevant, as encrypted 
content is exchanged between two clients.

It is possible to register up to 8 client applications (usually 
different devices) in total: 7 are permanent, 1 is temporary. 
Temporary devices are Wire web browser clients. Registering 
a new temporary client will replace the old one. This 
restriction on the number of clients limits the amount of 
computation required for sending encrypted messages. 
Upon successful client registration, the server returns a client 
ID ($C_{id}$) which is unique per user ID.

URI format of Wire handles and Wire Client-IDs
Both Wire handles and Wire client-IDs need to be 
represented in end-to-end identity certificates, in ACME 
messages and related DPoP challenges. The most convenient 
way to represent these identifiers in X.509 certificates and 
to distinguish one type from the other is using an URI.

Client-ID format
The fully-qualified Wire client-ID URI format is shown below.
Example: wireapp:2XlgqeneTyOPiefTp6R-
SA!ce6af3facf225073@example.com`
→	 wireapp: the specific protocol (the Wire protocol)
→	 2XlgqeneTyOPiefTp6R-SA an unpadded base64url 

representation of the user-ID part of a qualified Wire 
client-ID. This corresponds to the traditional UUID 
representation of: d97960a9-e9de-4f23-
8f89e7d3a7a47e48

→	 ! the separator between the user-ID and client-ID 
portions

→	 ce6af3facf225073 the unqualified, 64 bit client-ID in 
hexadecimal

→	 @ the separator between the client-ID portion and 
the domain

→	 example.com the backend domain

Wire Handle format
The fully-qualified Wire handle URI format is shown below. 
Example: wireapp:%40alice.smith@example.com
→	 wireapp: the specific protocol (the Wire protocol)
→	 %40 the URI encoding of the @ character which signals 

a Wire handle
→	 alice.smith the unqualified portion of the Wire handle 

without the leading “@” character
→	 @ the separator between the unqualified portion of the 

handle and the domain
→	 example.com the backend domain

Further Client Data
The following data will also be collected during client 
registration:
→	 Class: The device type; such as Mobile, Tablet or 

Desktop.
→	 Model: The device model, e.g. iPhone 12.
→	 Label: A human-readable label for the user to 

distinguish devices of the same class and model.
→	 Cookie label: A cookie label links the client to 

authentication cookies. When such a client is later 
removed from the account, i.e. when a device is lost, 
the server will revoke any authentication cookies with 
a matching cookie label. Once set, cookie labels can 
never be changed.

→	 Password: If the user has a password, client 
registration requires re-authentication with this 
password. Similarly, removing a registered client also 
requires the password to be entered.

Metadata
The server collects the following metadata for every newly 
registered client and makes it available to the user:
→	 Timestamp: The UTC timestamp when the client was 

registered.

https://wire-docs.wire.com/download/Wire+Privacy+Whitepaper.pdf
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Notifications on client registration
When a new client is registered with an account, all existing 
clients of the same account are notified of that event. 
Additionally, the user will be notified via e-mail. These 
notifications help the user to identify suspicious clients 
registered with their account, e.g. when login credentials 
are stolen.

End-of-life of a client
→	 The user permanently logs out of a client: All local state 

on the device of the client application is deleted, 
including all secrets. The backend retains an entry for 
that client, including its public key material.

→	 A user deletes a client (“device”) from their account 
on another client: This causes the backend to drop the 
corresponding entry in the user’s devices list. The 
backend also drops all cookies associated with that 
client. Additionally, the to-be-deleted client is notified by 
the backend and erases all local state on the device. The 
user is prompted for their password for this operation.

→	 A user account is terminated: All server-side data 
associated with that account is deleted, including the 
client list. The user’s clients are notified, like above, and 
proceed to erase all their local data.

→	 A user uninstalls the Wire app on Android or iOS: In this 
instance the operating system deletes all data associated 
with the app, but the event is not communicated to the 
backend (due to technical infeasibility on mobile 
platforms). The backend retains an orphaned entry of 
that client in the user’s devices list.

Push token registration
As a final registration step, a client can register push tokens 
in order to receive push notifications over Google’s Firebase 
Cloud Messaging (FCM) or Apple Push Notification Service 
(APNs). Those services are used by the backend to notify 
the client app about available messages while the client does 
not have an active WebSocket connection open to the 
backend. In addition to that, Wire also offers a F-Droid 
version of the Wire app that is preconfigured to avoid FCM 
and receive notifications via websockets.

Details about push notifications can be found in the 
respective section.
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Authentication & Authorization
Access to the functions of the backend service APIs require 
authentication. 

Tokens
API authentication is based on a combination of short-lived 
bearer tokens, referred to as access tokens, as well as 
long-lived user tokens. Access tokens are used to 
authenticate requests to protected API resources and user 
tokens are used to continuously obtain new access tokens.

Both token types have the following structure:

They are strings signed by the backend and include the user 
ID (UUID v4) and the expiration time as a Unix timestamp.

The long-lived user tokens have a binding to the 
corresponding user (u) and a 32 bit connection identifier 
(r), generated by the backend. Additionally, a user token may 
contain a binding to a client ID.

User tokens are sent as HTTP cookies and are therefore also 
called cookies. The scope of user tokens can be persistent 
or session-based, with the same semantics as those 
specified by the HTTP protocol. A client chooses the scope 
of the cookie during login. The HTTP cookie attributes 
restrict their use to the domain of the backend server, to the 
path of the token refresh endpoint as well as to the HTTPS 
protocol. Persistent cookies are stored in permanent, secure 
storage on the client. Session cookies are kept in ephemeral 
storage only (e.g. a browser session). Persistent cookies 
expire after 1 year and session cookies expire after 1 week.

The short-lived access tokens have a binding to the 
corresponding user (u) and contain an additional 64 bit 
random number (c) that stays constant through renewals. 
Additionally, an access token may contain a binding to a 
client ID (i).

Access tokens are comparatively short-lived (15 minutes). 
To refresh an expired access token, a client uses a cookie 
to obtain a new access token. If the cookie is valid, a new 
access token is generated and returned. When an access 
token is refreshed, the server may additionally issue a 
new cookie, thus continuously prolonging the expiration 
date. Such a cookie renewal typically occurs approx. every 
3 months.

A user account may have a maximum of 32 persistent 
cookies and 32 session cookies, both of which are replaced 
transparently from least recent to most recent.

token ::= <signature> “.” <version> “.” <key-index> “.” <timestamp> “.” <type> “.” <tag> “.” <type-specific-data>
signature ::= Ed25519 signature
version ::= “v=” Integer
key-index ::= “k=” Integer (> 0)
timestamp ::= “d=” Integer (POSIX timestamp, expiration time)
type ::= “t=” (“a” | “u” | “b” | “p”) ; access, user, bot, provider
tag ::= “l=” (“s” | “”) ; session or nothing
type-specific-data ::= <access-data> | <user-data> | <bot-data> | <provider-data>
access-data ::= “u=” <UUID> “.” “c=” <Word64> (“i=” <Word32> | “”)
user-data ::= “u=” <UUID> “.” “r=” <Word32> (“i=” <Word32> | “”)
bot-data ::= “p=” <UUID> “.” “b=” <UUID> “.” “c=” <UUID>
provider-data ::= “p=” <UUID>
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Login
Logins are classified as session or persistent logins, which 
corresponds to the desired scope of the resulting cookie. 
Clients can choose the type of login.

Login using a password
To login with a password, a client provides a user ID, e-mail 
address and the password, which are transmitted over TLS. 
The server verifies the password using scrypt (see section 
Passwords) and issues a new user token as an HTTP cookie 
as well as a new access token.

Login using SAML SSO
SSO (Single Sign-On) is technology allowing users to sign 
into multiple services with a single identity provider/
credential. For this, a Team administrator must configure 
the SAML connection with the IdP to be used.

Using SSO, the login flow then works as follows:

User starts authentication in Wire

HTTP Post to IdP w/auth request

(HTML FORM redirect in browser)

Redirect to Wire a/ SAML token

(HTML FORM redirect in browser)

User is logged into Wire

end user is sent to login page at IdP
user logs, or browser send cookie

Auth request is passed, verified

SAML token is generated

End User
(Mobile, Desktop, WebApp)

Wire Server Identity Provider
(IdP)

Password Reset
Wire provides a self-service password reset for any registered 
user with a password and a verified e-mail address. The 
procedure for a password reset via e-mail is similar to the 
initial verification (see section Registration by E-Mail), with 
the following differences:
→	 There can be only 1 pending password reset for an 

account at any time. A new password reset cannot be 
initiated before the timeout window expires.

→	 The password reset codes are valid for 1 hour.

A password reset code has two parts, key and code. The 
key is a SHA256 hash of the user ID. The code is a random 
base64 encoded string of 24 bytes. If someone tries to 
guess the code for a given key incorrectly 3 times in a row, 
the key-code is deleted from the backend and the password 
cannot be reset with this key anymore. Resetting the 
password invalidates all cookies, so that the user has to log 
in again on existing devices.
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Messaging
Messaging refers to exchanging text messages and various 
types of files, called “assets” (see section Asset Encryption). 
All messaging in Wire is subject to end-to-end encryption, 
in order to provide users with a strong degree of privacy 
and security. End-to-end encryption takes place between 
two (or more) client applications. A device where such a 
client application is installed is typically called client device, 
be it a smartphone, laptop, or desktop computer.

For end-to-end encryption (E2EE), Wire supports the older 
[Proteus] protocol as well as the newer [Messaging 
Layer Security (MLS)]. Wire implements both protocols 
cryptographically independent of each other.

Client identity verification
Each client device has a cryptographic public identity 
key, which is used to establish end-to-end encryption to 
that device. In order to rule out man-in-the-middle attacks, 
a client device needs to establish trust in the used identity 
keys of their communication peers. This ensures that each 
client really communicates with the client it believes it talks to.

Establishing trust in the used identity keys works differently 
depending on the used protocol:

Proteus
For Proteus, users must manually compare the public identity 
key fingerprints they see on their device with the fingerprints 
displayed at their communication peer’s devices. This 
comparison must be done for every device used for 
communication. Ideally, this should be done over another 
secure channel or in person to prevent attackers from 
intercepting or tampering with the verification process.

A chat is displayed with a blue-shaded shield icon as soon 
as all devices taking part in the chat are manually marked 
as verified.

MLS
In MLS, this verification can be automated if clients 
additionally trust the backend servers to authenticate users 
properly. For this optional on-prem feature, the backend 
operates a CA and issues X.509 certificates. See section 
X.509 Credentials for details.

A chat is displayed with a green shield icon (ID Shield) as 
soon as all devices taking part in the chat are verified to have 
valid X.509 certificates.

Conversation and device verification states
A conversation in Wire has a verified state that is one of:
→	 non-verified
→	 verified
→	 degraded

Conversations start in the non-verified state. A conversation 
is verified when all the participants and participants’ devices 
(including the current user) are verified. Once a conversation 
is verified, it can degrade (go back to not being verified) if a 
non-verified user or device is added, or if one of the users or 
devices becomes unverified.

“Non Verified” State
A conversation is “non verified” if it is not “verified” nor 
“degraded” (see later). Non verified conversations can 
later become verified.

“Verified” State
A conversation is verified if all the participants (users that are 
member of the conversation, including the current user) are 
verified. A user is verified if all known devices of the user are 
verified. When every device of a conversation is locally 
marked as verified (this also includes the clients of the 
sending user) a conversation will be marked as verified by 
displaying a shield next to the conversation name. In case of 
a successful automated device verification through MLS, 
a green shield is displayed. Wire does not provide any 
kind of synchronization of the verified state of conversations 
or clients.

Joining the two definitions from before: A conversation is 
verified if all known devices of all participants are verified.

If the condition is broken, the conversation becomes 
degraded.

“Degraded” State
When a conversation becomes degraded, the user is 
informed with system messages. In the degraded state the 
user can still receive messages, but must either mark the 
conversation as non verified or verify all new clients to be 
able to send messages into that conversation.

Common situations that cause a conversation to degrade are:
→	 a new user is added to the conversation;
→	 a participant in the conversation adds a new client which 

is not verified;
→	 a device is no longer verified because a certificate 

expired or is revoked for a device of a user that is in 
that conversation.

All clients 
are verified

All clients 
are verified

Not all clients 
are verified

Conversation is verified

Start Non
verified Verified Degraded
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End-to-end Encryption
Proteus
Proteus is an independent implementation of the Axolotl/
Double Ratchet protocol, which is in turn derived from the 
Off-the-Record protocol, using a different ratchet. 
Furthermore, Wire uses the concept of prekeys to use the 
protocol in an asynchronous environment. It is not necessary 
for two parties to be online at the same time to initiate an 
encrypted conversation.

Proteus Sessions
Proteus provides end-to-end encryption guarantees between 
two endpoints (clients). For this, the clients establish a 
“Proteus session” between each other. Each session is 
uniquely identified by the pair of identity keys of the clients 
involved, as the client mandates that there can only be one 
session at a time between two clients.

Sessions can be manually “reset” by the user, meaning that 
an existing session is discarded and replaced by a new one. 
This action then applies only to the device for which it was 
initiated in the device details page in the GUI. The initiating 
client then bootstraps a new session, as if no previous session 
existed. The receiving client parses those new incoming 
messages, detects that a new session has been initiated and 
discards the previous session.

The following sections detail the establishment of a Proteus 
session and describe how it can be used to encrypt 
messages.

Primitives
Proteus uses the following cryptographic primitives 
(provided by libsodium):
→	 ChaCha20 stream cipher for message encryption
→	 HMAC-SHA256 as MAC for message authentication
→	 X25519 (Elliptic curve Diffie-Hellman based on 

Curve25519) for key agreement
→	 HKDF (HMAC-SHA256) for key derivation (RFC 5869).
→	 Ed25519 for digital signatures (RFC 8032)

Proteus key material
Every client initially generates some key material which is 
stored locally:
→	 Identity keypair: $(a, ga) {ϵ}R Zp × Curve25519$where$g 

ϵ Curve25519$
→	 A set of prekey pairs: $ ( k(a,i),gk(a,i)) {ϵ}R Zp× 

Curve25519$where$0≤i≤65535$.

Prekeys
Prekeys are required to asynchronously initiate Proteus 
sessions between two clients. A public prekey consists of 
the static, public identity key of a client together with an 
ephemeral public DH key. A client regularly uploads a set 
of such prekeys to the backend.

When a client becomes aware that prekeys have been used 
to initiate sessions, it will upload new prekeys to replenish 
the pool on the backend. The client tries to ensure that the 
backend has 100 unused prekeys available.

These prekeys are eventually used by other clients to 
asynchronously initiate an end-to-end encrypted 
conversation, since a prekey allows to establish the initial 
encryption keys even if the recipient is offline. As soon 
as the first round-trip has occurred within a session, newly 
sampled key material is automatically introduced through 
the DH ratcheting.

Last Resort Prekey
Every prekey is intended to be used only once, which means 
that the server removes a requested prekey immediately. 
Thus, it is possible that the backend runs out of unused 
prekeys for a client. This can happen e.g. when a client has 
been offline for a while and hasn’t been able to upload new 
prekeys, while other clients have initiated Proteus sessions 
with it.

For this, one prekey is the so-called “last resort” prekey. It 
is always available on the backend and never removed by 
design. The last resort prekey has the lifetime of a client.

X3DH
The X3DH (triple Diffie-Hellman) key agreement protocol 
is used to establish a shared secret, called master_secret, 
between two clients.

Overview
Let Alice be the initiating client and Bob be the responding 
client.
→	 Alice fetches one public prekey for Bob from the backend
→	 Alice generates an ephemeral prekey and uses it for 

the key agreement with the prekey of Bob’s client (see 
section “Details of the key agreement” below)

→	 Alice sends a prekey message to Bob that contains the 
public values of her ephemeral prekey and optional 
encrypted application payload (e.g. an actual text 
message)

→	 Bob receives the prekey message, completes the key 
agreement in turn, and can decrypt the application 
payload

Details of the key agreement
Bob has the ephemeral DH key pair $(eskbob,ekbob)$ and 
hisidentitykeypair$(iskbob,ipkbob)$.Bob’sprekeyisthebund 
≤ $(epkbob,ipkbob)$.

Alice generates her ephemeral DH key pair 
$(eskalice,epkalice)$ and 
hasheridentitykeypair$(iskalice,ipkalice)$.

https://github.com/wireapp/proteus
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/asynchronous-security/
https://github.com/jedisct1/libsodium
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8032
https://signal.org/docs/specifications/x3dh/
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[!NOTE] Identity keys are Ed25519 keys but are converted to 
X25519 keys during the X3DH phase. This authenticates 
the key agreement without using a signature.

Alice computes the triple DH agreement as follows:
$$m * ersec ret = DH(eskalice,epkbob)||D 
H(eskalice,ipkbob)||DH(iskalice,epkbob)$$

Bob computes:
$$m * ersec ret = DH(eskbob,epkalice)|| 
DH(iskbob,epkalice)||DH(eskbob,ipkalice)$$

Here, concatenation of octet strings is denoted by ||.

Both clients now have the same master_secret and can use 
it to initiate a Proteus session. Note that the key agreement 
also authenticates the peer by only establishing the same 
master_secret on both sides if the other side has knowledge 
of its private identity key $isk$.

Diffie-Hellmann ratcheting
With a shared master secret, both parties could now send 
encrypted messages to one another. However, Proteus aims 
to achieve both Post-Compromise Security (PCS), and a 
more fine-grained Forward Secrecy (FS) as the one already 
achieved by X3DH.

The DH ratchet helps Proteus to achieve Forward Secrecy 
not only for keys exchanged in past sessions, but keys 
exchanged in past DH ratchet steps. The KDF ratcheting 
explained in section KDF Ratcheting increase the FS 
guarantees even further.

Proteus achieves Post-Compromise Security by using a DH 
ratchet. The DH ratchet protocol is based on the previously 
agreed upon master_key, as well as Bob’s (i.e. the receiver’s) 
ephemeral key pair.

To initiate the ratchet, Alice generates a X25519 DH key pair 
(a Diffie-Hellman public and private key) which becomes her 
current ratchet key pair. Every message from either party 
begins with a header which contains the sender’s current 
ratchet public key. When Bob receives a new ratchet public 
key, a DH ratchet step is performed, which replaces Bob’s 
current ratchet key pair with a new key pair:

The following illustrates a sequence of DH ratchet steps, 
where the DH output is the shared ratchet_secret (Source: 
Double Ratchet Algorithm)

BobAlice

Private Key Public Key

Private KeyPublic Key

DH OutputDH

Public Key

BobAlice

Private Key Public Key Public Key

Private KeyPublic Key

Private KeyPublic Key

DH Output =

=

DH

DH

DH Output DH

DH Output DH

Public Key

Private Key Public Key

DH Output

DH Output

DH

Public Key

BobAlice

Private Key Public Key Public Key

Private KeyPublic Key

Private KeyPublic Key

DH Output =DH DH Output DH

DH Output DH

Public Key

https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/
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This results in a “ping-pong” behavior as Alice and Bob 
take turns replacing ratchet key pairs in each stage. An 
eavesdropper who briefly compromises one of the parties 
might learn the value of a current ratchet private key, but 
that private key will eventually be replaced with an 
uncompromised one. At that point, the Diffie-Hellman 
calculation between ratchet key pairs will define a DH output 
unknown to the attacker.

KDF Ratcheting
Since Proteus is an asynchronous protocol, there is no 
guarantee that round trips will occur, e.g. when one of the 
clients is offline while the other one sends messages. In 
this scenario, more fine-grained forward secrecy can be 
achieved by KDF (Key Derivation Function) ratcheting forward 
existing key material.

Starting from an initial KDF key, each KDF ratchet step takes 
an additional bit string as input and yields a new KDF key 
in addition to an output key. 

Double Ratchet - Proteus key schedule
The combination of DH ratchet and KDF ratchet yields a 
double ratchet.

The double ratchet uses an initial root_key_0, and the ratchet_
secret values from a continuous DH ratchet to create KDF 
sending and receiving chains (depending on who sent the 
DH key in a particular step) for each DH ratchet step. The 
purpose of these two chains, each again a KDF ratchet, is 
to ensure that each derived key is only used once to 
protect a message (different keys are used for encryption 
and authentication).

The first root_key_0 and chain_key_0_0 are derived via

root_key_0 || chain_key_0_0 = HKDF( 
input: master_secret, 
info: “handshake”, 
length: 64)

The following figure from Double Ratchet Algorithm 
illustrates the interaction between DH and KDF ratchet 
for a receiving chain.

For each DH ratchet step, a root_key_n root key is used 
along with a ratchet_secret_n to derive the 32 byte 
chain_key_n_0, as well as a 32 byte root_key_n+1:

root_key_n+1 || chain_key_n_0 = HKDF(
input: ratchet_secret_n,
salt: root_key_n,
info: “dh_ratchet”,
length: 64)

The chain_key_n_0 is then used as initial chain key for a 
sending or receiving chain, depending on which party sent 
the DH public key in this DH ratchet step.
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From the initial chain_key_n_0, as well as any chain_key_n_m, 
a new message_key_n_m and chain_key_n_m+1 can be 
derived when the client wants to encrypt a message:

message_key_n_m = HMAC-SHA256(message: “0”, 
key: chainkey_n_m)
chain_key_n_m +1 = HMAC-SHA256(message: “1”,  
key: chainkey_n_m)

The keys resulting from the individual sending and 
receiving chains are used to derive keys for encryption 
and authentication of individual messages.

Key buffering
When Proteus protocol messages arrive out of order or are 
dropped completely, ratcheting the KDF chain forward can 
lead to problems when decrypting chat messages. Thus, 
clients ratchet the chain forward a number of messages, 
while buffering intermediate keys for which no messages 
were yet received.

In order to limit this buffering, the KDF ratcheting has a 
threshold of 1000 dropped protocol messages. When clients 
detect that the number of missing messages is above the 
threshold (by comparing a message counter), further 
messages are dropped by the client and an error message is 
shown to the user. This upper bound mitigates DoS attacks 
between clients and is never reached in normal operation.

Key Deletion
Throughout the execution of Proteus, keys are deleted after 
they were used to derive their follow-up key(s). The exception 
for this are message_key_n_m, which are deleted after 
they were either used to encrypt or decrypt a message.

Message encryption
Messages are encrypted using symmetric encryption 
through ChaCha20 with key symmetric_key_n_m.The 
corresponding nonce is derived from a message counter 
of the hash ratchet chain.

The integrity of messages is ensured by a HMAC-SHA256 
tag created by the key hmac_key_n_m.

symmetric_key_n_m || hmac_key_n_m = HKDF(
input: message_key_n_m,
info: “hash_ratchet”,
length: 64)

Messaging Layer Security (MLS)
The core functionality of MLS (RFC 9420) is an authenticated 
key exchange (AKE) for groups. The established keys are 
then used to protect messages sent in that group. 
Oversimplified, it is possible to describe MLS as TLS for 
groups, with evolving keys as group memberships change. 
Therefore, MLS defines mechanisms to synchronize group 
modifications (add and remove members) within a group. 
This serialization is done by the message Delivery Service 
in MLS, which is implemented by the centralized backend 
of Wire. Thus, MLS as implemented by Wire does not use 
group consensus protocols.

MLS provides Forward Secrecy and Post-Compromise 
Security at every state of the group. The following section 
describes how MLS achieves those guarantees.

Cryptographic State and Group Evolution
The cryptographic state of an MLS group is defined by three 
components. Each client maintains a local instance of them:

→	 A Ratchet Tree, which describes who is currently a 
member of an MLS group and how to encrypt changes 
to the Ratchet Tree for all relevant participants. Each 
unique state of the Ratchet Tree is called an epoch.

→	 A Key Schedule, which defines a fresh base from which 
all secrets of an epoch are derived.

→	 A Secret Tree, which allows every member to derive 
sender secrets for every member in the group. Those 
secrets are then used for message protection. The 
Secret Tree is based on secrets exchanged through the 
Ratchet Tree and derived by the Key Schedule.

This cryptographic state evolves from one epoch to the next 
epoch by applying modifications to the Ratchet Tree. This 
process is also called committing changes to the tree. All 
group members locally commit changes in a synchronized 
manner. A modification of the Ratchet Tree provides a new 
commit_secret, which updates the Key Schedule and, 
indirectly, the Secret Tree. This ensures that, for example, 
removing a member from a group cryptographically 
guarantees that they can not decrypt subsequent messages 
sent in that group. Thus, post-compromise security is 
provided between epochs by Ratchet Tree updates. Forward 
secrecy is provided between epochs by deleting past 
versions of the Ratchet Tree.

In order to accomodate real world conditions and ensure 
usability, Wire client’s stores the key material up to the last 
three epochs. The out-of-order tolerance is set to two while 
the maximum-forward-distance is set to 1000. For further 
explanation why this is needed see the OpenMLS 
documention.

https://datatracker.ietf.org/doc/html/rfc9420
https://datatracker.ietf.org/doc/html/rfc9420
https://datatracker.ietf.org/doc/html/rfc9420
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The RFC 9420 for MLS describes these cryptographic 
operations in detail.

MLS Cipher Suites
An MLS group uses a single cipher suite that was selected 
by the creator of the group. The cipher suite defines the 
following primitives, which are used for all cryptographic 
operations in a group:
→	 Hybrid Public Key Encryption (HPKE, RFC 9180) 

parameters:
−	 A Key Encapsulation Mechanism (KEM)
→	 A Key Derivation Function (KDF), defined by the KEM
→	 An AEAD encryption algorithm
→	 A hash algorithm
→	 A signature algorithm

The names of MLS cipher suites follow the pattern 
MLS_SecurityLevelInBitsKEMAEADHashAlgSignatureAlg.

The cipher suites currently used by Wire (public cloud 
offering) is:
MLS_128_DHKEMP256_AES128GCM_SHA256_P256

Additionally, new on-premises installations can be configured 
to use one of the following ciphersuites:

→	 MLS_128_DHKEMX25519_AES128GCM_SHA256_
Ed25519

→	 MLS_128_DHKEMP256_AES128GCM_SHA256_P256
→	 MLS_256_DHKEMP384_AES256GCM_SHA384_P384
→	 MLS_256_DHKEMP521_AES256GCM_SHA512_P521

Cryptographic Objects in MLS
Identity keys
When a new client is instantiated, it locally generates a 
long-term identity key pair for each supported signature 
scheme (depending on the supported cipher suites). The 
corresponding private key is only stored locally on the 
device. The public key is sent to the backend and can be 
retrieved by other clients. Note that the key type corresponds 
to the selected cipher suite(s): if only the MLS_128_
DHKEMP256_AES128GCM_SHA256_P256 cipher suite is 
supported, a client only generates an elliptic curve P-256 
keypair as identity key.

Credentials
Credentials are used to authenticate the identity of an MLS 
group member (i.e., a Wire client). The information stored 
in the credential can be verified by the MLS 
Authentication Service in use for a group. Credentials are 
intended to be reused among different groups using the 
same cipher suite. Thus, a client may use multiple Credential 
types simultaneously.
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Basic Credentials
A basic credential is a bare claim of an identity without 
included cryptographic proof. MLS does not specify the 
format of the basic credential. In case of Wire, the basic 
credential consists of the fully qualified client-ID.

X.509 Credentials
Automatic cryptographic end-to-end identity verification 
is only possible when using the x509 credential type. This 
type provides a cryptographic binding between a public 
identity key and a fully qualified client-ID.

Whenever a new credential is introduced to a group, the 
credential must be validated. This includes a full certificate 
chain validation.

The section ID Shield provides more details on the issuance 
and verification of X.509 Credentials.

Key Packages
MLS uses so-called Key Packages for asynchronous addition 
of a client to a group. Clients publish key packages on the 
directory of the Delivery Service, i.e., the Wire backend.

This key distribution mechanism is displayed here:
In order to support multiple MLS cipher suites, there is one 
set of key packages for one cipher suite.

Each key package is intended to be used only once to join 
exactly one group. To achieve this, the directory returns 
every key package only once and removes them from the 
directory in the same step. At the moment, Wire clients will 
generate and upload 100 key packages per cipher suite and 
refill the key packages for a cipher suite if the number of 
available key packages drops below 50.

[!NOTE] Even though the MLS protocol specification allows 
it to reuse a key package in case of last resort, when no 
more unused key packages are available, Wire does not 
implement the support for last resort key packages.

A key package consists of:
→	 The supported protocol version
→	 The cipher suite (section MLS Cipher Suites) for this 

key package, defining the compatibility and the used 
cryptographic primitives

→	 A public key (KeyPackage.init_key), only to be used 
for encryption of the Welcome message

→	 The Leaf node that will be added to the Ratchet Tree. 
This contains the Credential used to authenticate the 
client’s identity key

→	 Optional additional MLS extensions used by the client
→	 The cryptographic signature of the previous data, 

verifiable with the identity key from the credential

When the Wire client uploads KeyPackages that contain an 
X.509 Credential, the Wire server verifies that the identity 
public key covered by the “leaf certificate inside that Credential 
in the LeafNode of the KeyPackage” matches the client’s 
uploaded identity key for the cipher suite/signature algorithm 
of the KeyPackage.

Ratchet Tree
MLS uses a so-called Ratchet Tree to describe the current 
state of a group and distribute shared secrets within the 
group. The use of a tree to manage the membership state 
of all clients is the core component, which allows to perform 
efficient changes to the group while only having to perform 
updates for relevant subtrees of a group.

Tree terminology
Tree nomenclature
A tree consists of nodes. Nodes are connected in a 
hierarchical order where a node can be the parent of its 
child. A node is a leaf if it has no children. The node without 
a parent is the root node of a tree. Nodes with children and 
parents are intermediate nodes. All children with the same 
parent node are siblings.

A subtree of a node is a subset of a tree where the node 
becomes the root node and only the children below this 
node (children, children of their children, ...) are part of the 
new subtree.

MLS only uses binary trees, which means that all parents 
have exactly two children, a left child and a right child.

(A) uploads key packages

DirectoryBA

Key packages (A)

reqKeyPackages(A)

KeyPackages(A)

(B) requests a key package for (A)
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Paths
The direct path of a leaf node describes all nodes on its path 
from that node to the root node.

The copath of a node describes all siblings of the nodes 
from the direct path.

Ratchet Tree structure
The Ratchet Tree is used to efficiently distribute encrypted 
updates (i.e., Commits) to the future members of the 
group in the next epoch. Its data structure is a binary tree 
representing group membership and asymmetric key 
knowledge within an MLS group. It consists of two 
different types of nodes:

Leaf nodes Tree nodes with no children. A leaf node is either 
empty (blank) or represents a client. Such a non-empty 
Leaf node contains a public HPKE key encryption_key, a 
public signature key signature_key, and the client’s Credential, 
among other details. The signature_key is used to sign the 
Leaf node and is authenticated by the Credential.

Parent nodes Every other tree node is a parent node. A Parent 
node contains a public HPKE key encryption_key, among 
other details.

The encryption_key is used for encrypting updated key 
material for that client or set of clients beneath that node.

The Ratchet Tree has two views, a public and a private one.

The public view provides the public keys for each node, 
known by all members. All set (non-empty) leaf nodes hold 
a public key. Parent nodes usually hold a public key, too. 
However, parent nodes, especially when being newly created, 
have no key data assigned.

The private view represents the knowledge of private keys, 
which is different for each client. In the private tree all clients 
know their own private key for their leaf node. Additionally, 
clients might know the private parts of the encryption_keys 
of their parent nodes.

Ratchet Tree updates
MLS Proposals and Commits are used to distribute changes 
to the Ratchet Tree.

Key Schedule
In each epoch, the group keys are derived locally by every 
client using the Extract and Expand functions from the KDF, 
defined in the group’s cipher suite.The secrets can be derived 
either by knowing the previous `init_secret` and `commit_
secret` from the Ratchet Tree or by knowing the `joiner_
secret`, as provided in `Welcome` messages for newly 
added clients.

MLS provides a method to include pre-shared keys (psk) 
into the Key Schedule, by providing a PSK-Proposal, which 
references a psk that should be used. Wire does not use or 
implement psks.

Secret Tree
For all encrypted messages exchanged within one epoch 
MLS uses hash-based ratchets to derive one-time-use 
encryption keys. All hash ratchets origin in `encryption_secret` 
from the key schedule.

The Secret Tree uses the structure of the Ratchet Tree to 
derive all tree node secrets and thereby assign the ratchet 
secrets to each leaf. Based on this chained key derivation 
to each leaf, MLS provides a sender ratchet.

Each sender has their own sender ratchet, and each step 
along the ratchet is called a generation. For handshake and 
application messages, a sequence of keys is derived via this 
sender ratchet. The ratchet is iterated for every message that 
needs to be encrypted, so the key and nonce derived from a 
ratchet are intended for one-time use only. This process is 
comparable to the KDF Ratcheting in Proteus.
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End-to-end identity verification (ID Shield) 
For on-prem installations using MLS, Wire offers automatic 
end-to-end verification of identities (“ID Shield”) using 
X.509 certificates.

This section details issuance and verification of X.509 
Credentials, which is specific to MLS.

X.509 Credentials facilitate automatic verification of:
→	 the identity of MLS-capable clients,
→	 the identity of users of those clients, and
→	 the entire MLS conversation.

Limitations
Only for Teams
Currently end-to-end identity verification (E2EI) is designed 
as a Team-based feature. This means that the feature 
can be enabled for specific Wire Teams (or all Teams on 
a backend - with the same configuration values). This also 
means that individual non-Team users will not have access 
to E2EI.

No guest users
Guests (temporary users without Wire account, active for 
24 hours) in MLS conversations can not participate in E2EI. 
This is because it is not feasible to verify the user’s identity 
as part of the E2EI proof flow.

Introduction to components and services
In general, the PKI is structured as follows: The backend’s 
MLS Authentication Service issues X.509 leaf certificates 
to clients, which uses those certificates to generate MLS 
X509Credentials. For this, the Authentication Service has 
an X.509 CA certificate and a corresponding private key. 
This CA certificate is subsequently called intermediate CA 
certificate. The root CA certifies the intermediate CA 
certificate. Its private key is stored offline and is the single 
trust anchor used by clients of that backend.

Customer provided

Team Management or SCIM

Wire packaged

IdP PK
discovery

DPoPACMEOIDC

IdP

CA

ACME Wire
-server

Clients

To provide automatic certificate management, the 
following components are required:
→	 OpenID Connect (OIDC)-compliant Identity Provider 

(IdP) Wire can use an existing customer deployment 
for this.

→	 “Identity Authority”, consisting of a) X.509 Certificate 
Authority (CA) b) ACME server. In Wire, the Identity 
Authority is implemented by Smallstep’s step-ca.

→	 The existing backend interface

Identity Authority

In the case of Wire, the X.509 certificate authority (CA) and 
the ACME server is the same component (step-ca).

Due to the trust relationship of CA, IdP, and Backend, the 
end-to-end identity feature is only available for on-prem 
installations which is managed by the customer itself.

X.509 Certificate Authority (CA)
Administrators need to configure the CA with a certificate 
suitable for issuing other certificates.

The public key of the CA, which is part of the Identity Authority, 
can be trusted directly by the clients (e.g., fetched from the 
ACME server during initial enrollment and stored on application 
level). This mechamism is based on trust on first use.

In general, the following components of a PKI need to 
be generated and run as part of E2EI:
1. Root CA
2. Intermediate CA
3. Cross-signed intermediate CA for every federated domain
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Wire recommends storing this CA key in dedicated hardware, 
like a hardware authentication card (for example, Yubikey or 
other PKCS#11 card) or a Hardware Security Module. From 
an operational standpoint, Wire flexibly adapts to whichever 
CA operation policies the customer may have.

The following subsections detail the used keys:

E2EI PKI root CA
The root CA of a backend has a private key in the PKI of the 
backend’s X.509 Credentials.

Type Typically NIST ECDSA P-256 with SHA2-256. Other 
signature algorithms like RSA or Ed25519 are also possible.
Creation By the backend administrators, during the setup 
of the backend or root CA key rollover
Storage Offline system or dedicated hardware
Deletion Upon decommissioning of the E2EI feature or key 
rollover

For the root certificate, Key Usage and Basic Constraints 
X.509v3 extensions must be configured according to this 
template:

{
“subject”: {

“organization”: “alpha.example.com”,
“commonName”: “alpha.example.com Root CA”

},
“issuer”: {

“organization”: “alpha.example.com”,
“commonName”: “alpha.example.com Root CA”

},
“keyUsage”: [

“certSign”,
“crlSign”

],
“basicConstraints”: {

“isCA”: true,
“maxPathLen”: 1

}
}

A suitable expiration date for the certificate could be 
multiple years.

E2EI PKI intermediate CA
The intermediate CA of a backend has a private key for 
issuing the backend’s X509Credentials. The intermediate 
CA’s private key is also used to sign the CRL. The 
intermediate CA is signed by the local backend’s root CA. 
Moreover, federated domains cross-sign the public key of 
this intermediate CA.

Type Typically NIST ECDSA P-256 with SHA2-256. Other 
signature algorithms like RSA or Ed25519 are also possible.

Creation By the backend administrators, during the setup 
of the backend or intermediate CA key rollover.

Storage The private key should be stored in a secure location 
such as a Hardware Security Module, or on the cluster 
(encrypted with a secret stored in a k8s secret resource), 
or in an equivalent secure location. The private key must 
be accessible to the CA in the Identity Authority (Smallstep).

Every approach has pros and cons and should be evaluated 
by the customer according to risk assessment.

Deletion Upon decommissioning of the E2EI feature or 
key rollover

For the Intermediate Certificate, Key Usage and Basic 
Constraints X.509v3 extensions must be configured according 
to this template:

{
“subject”: “alpha.example.com Intermediate CA”,
“keyUsage”: [

“certSign”,
“crlSign”

],
“basicConstraints”: {

“isCA”: true,
“maxPathLen”: 0

},
“nameConstraints”: {

“critical”: true,
“permittedDNSDomains”: permittedDNSDomains,
“permittedURIDomains”: permittedURIDomains

}
}

where `permittedDNSDomains` must contain the host name 
at which the Smallstep server is served, for example, `acme.
alpha.example.com`. The field `permittedURIDomains` is the 
federation domain exposed by the Wire instance, for 
example, if users on that instance have the Wire identifier `@
max@alpha.example.com`, this should be set to `alpha.
example.com`.

It is possible to rotate this certificate; when doing so, a new 
dedicated key pair should be used. Wire recommends a 
conservative expiration of 6 months.

Cross-signed intermediate CA
The cross-signed Intermediates must be created for every 
federating domain. As a first step, a CSR signed with the 
private key of the federating parties’ intermediate certificate, 
must be created.

This CSR must be securely transmitted and then signed by 
the other parties Root, using the same intermediate template 
as specified earlier. The resulting certificate must be served 
as `federatedRoot` to ones own clients.
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This needs to be repeated, every time a new federating 
domain is added or certificates in the chain expire.

Certificate revocation list (CRL)
The certificate issuer server maintains a Certificate 
Revocation List (CRL), which is a signed list of 
certificates revoked by a particular issuer within a 
specified validity period. The CRL can be accessed via 
HTTPS through a URL included in the certificates.

Further details on the CRL can be found in Section 
Certificate Revocation List.

ACME server
The ACME server uses the ACME protocol to automate 
certificate management. Clients communicate with the IdP 
and the Wire backend to obtain proofs of control over their 
identifiers and present those proofs to the ACME server. If 
those proofs are valid, the ACME server issues a certificate 
using the CA.

The ACME server is configured with several categories 
of information:
→	 where to contact the IdP, the clients use to prove control 

over their Wire handle and display name,
→	 where to contact the Wire server, the clients use to prove 

control over their client-ID,
→	 how to trust the Wire server by providing the public 

signature keys the Wire Server uses to sign the DPoP 
proof,

→	 where to fetch the IdP’s OIDC discovery document that 
contains the endpoint for fetching the IdP’s public key,

→	 certificate parameters such as allowed certificate 
lifetimes and signature algorithms,

→	 how to determine the Wire handle and display name 
format from the information provided by the IdP.

To handle the last category, the configuration includes 
transformations needed between the user information 
provided by the IdP and the exact format of the display 
name and handle identifier included in client certificates. 
For instance, assuming that the unqualified Wire handle 
and the local part of an email address are consistent for a 
specific team, the ACME server could then validate the Wire 
handle based on an email address returned in the IdP’s 
OIDC response. Likewise, the ACME server could check 
for the presence of custom OIDC claims or membership in 
a certain group.

Together with the CA, the ACME server forms the Identity 
Authority. The Identity Authority must be reachable by all 
Wire clients over a single TCP port number. The Identity 
Authority has no connection to any Wire server 
component and should not be in the same firewall zone as 
the Wire server.

Client-ID proof interface of the backend
Wire clients use this interface to obtain a proof of control 
over their client-ID.

Customer-provided component: OIDC IdP
An OpenID Connect (OIDC)-compliant Identity Provider (IdP) 
is a required external service needed for the E2EI feature. 
The IdP has to support Individual Claims Requests. Ideally, 
the IdP supports SCIM for automated user provisioning and 
uses that to manage user accounts at the Wire server.

The OIDC IdP must be reachable by the Wire clients. It 
should be in a different firewall zone than the Wire backend 
or the Identity Authority. The OIDC IdP must be reachable 
for the ACME server to discover its public key pair for 
signature verification.

Possible instances of an IdP include an on-prem solution 
such as Keycloak, Gluu, or OpenIAM, a cloud service such 
as Microsoft Azure Identity, Google Identity, Okta, or Auth0, 
or an OAuth proxy such as dex (which could authorize based 
on another source such as an LDAP directory).

E2EI high-level process summary
Enrollment
The Wire client enrolls using the ACME protocol, and proves 
that it has control over its Wire handle, display name, and its 
Wire client-ID. All Wire identifiers used in this document are 
“qualified” identifiers.
→	 The Wire handle and display name are verified with an 

OIDC-compliant Identity Provider for the domain. The 
naming convention is enforced because the IdP uses 
SCIM to provision users to the Wire server. This ensures 
that the display name and the Wire handle is the same 
on the IdP and the Wire server.

→	 The Wire client-ID and the display name is verified 
with the responsible Wire server.

Once these identifiers are verified, the ACME server issues 
a certificate associating these three elements with the client’s 
public identity key.

Step by step:
1.	 At minimum every 24 hours and on login, the Wire client 

checks if end-to-end identity is enabled in the feature 
configuration for its Wire Team.

2.	 If enabled, the Wire client connects to the ACME server 
starting with the discovery URL for the Team; then it 
follows the ACME flow to request a new certificate.

3.	 During the flow, the Wire client needs to prove to the 
ACME server that it has control over their user’s Wire 
handle and display name by presenting an OIDC identity 
token from the IdP.

Typically, the IdP will be configured in such a way that 
the user will need to re-enter their login credentials.

https://www.rfc-editor.org/info/rfc8555
https://openid.net/specs/openid-connect-core-1_0.html
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The ACME server checks that the OIDC identity token 
is indeed signed by the IdP.

The client must also obtain a DPoP proof from the 
Wire server which contains its client-ID and user 
display name. 

The ACME server verifies that this DPoP proof is signed 
by the Wire server’s DPoP signing key.

The full list of checks done by the ACME server is omitted 
here for brevity.

4.	 If all checks were successful, then the ACME server 
provides a certificate for the client. Once the client 
obtains its certificate, it updates its KeyPackages 
and the LeafNodes in all its MLS groups to include 
the certificate.

Presentation and Verification
The Wire client presents the certificate in its MLS groups by 
including the certificate in the Credential of its MLS 
LeafNodes. The Wire client also includes its certificate in 
its MLS KeyPackages, which are used by other clients to 
add this client into new MLS groups

Clients verify the certificates of the other clients:
→	 when receiving an MLS Welcome message, validate the 

certificates of all the peers in the newly joined group;
→	 when receiving an MLS Commit with a new peer or new 

certificate for an existing peer;
→	 when adding a new peer to an existing conversation 

(validate the certificates in the KeyPackages of the new 
clients to be added).

The Wire client will display a verification badge if all the 
clients in the MLS group/conversa- tion are verified. If a 
formerly verified conversation has a non-verified client (for 
example, if a new client is added or a certificate expires), 
the conversation will become degraded. See section 
Conversation and device verification states for more details.

Renewal
The Wire client periodically renews its own certificates well 
before they expire.

Each Client requests a new certificate, such that even if the 
client goes offline for the “server message hold interval” 
(default value - 28 days) - the client will renew early enough 
to insure it always has a valid certificate.

Whenever the client receives a new certificate, the client 
replaces its old KeyPackages with fresh ones, and updates 
its LeafNodes in all its MLS groups.

Revocation
The certificate issuer server maintains a Certificate 
Revocation List (CRL) - a signed list of revoked certificates 
from a specific issuer, with a specific validity time. The CRL 
is available via HTTPS from an URL embedded in the 
certificates. The Wire client checks on login for the CRLs 
of its issuer, and that of any federated issuers of E2E 
identity credentials in its conversations, and shortly before 
those CRLs expire (the default validity is 24 hours). If there 
is a conversation with another client that has a revoked 
certificate, the user will be warned and a conversation no 
longer will be verified.

The Certificate Revocation List is stored for future validations. 
If the revocation list contains any new entries, all 
conversations containing the relevant user are verified again 
to identify potentially revoked clients.

Revocation is a rare, strong action indicating that a device 
or piece of software is no longer trustworthy. It is akin to 
canceling a credit card, in that there is no certificate issuance 
possible after a revocation. Consequently, the user or admin 
of a client with a revoked certificate should also delete the 
corresponding client.

Asset Encryption
Assets are larger binary entities sent between users, such 
as pictures in a chat.

Profile pictures are uploaded as plaintext assets with 
technical metadata (e.g. width, height, file type) and are 
shared through a user’s profile.

Assets shared in conversations are end-to-end encrypted. 
Compared to regular text messages, the encryption of assets 
applies an optimization proposed here to reduce the required 
computational overhead and network bandwidth for the 
sender. 

On Wire, the sending client does the following:
1.	 It generates a random symmetric key $k$ for use with 

AES-256.
2.	 It encrypts the asset data with $k$ using CBC mode with 

PKCS#5/7 padding and computes the SHA-256 hash 
of the resulting ciphertext.

3.	 It uploads the encrypted asset data to the server
4.	 It encrypts the key $k$ together with the hash and 

other asset metadata via Proteus/MLS and sends it to 
the recipients.

https://signal.org/blog/private-groups/
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The receiving client of an asset metadata message then 
does the following:
1.	 It decrypts the asset metadata using Proteus/MLS, thus 

obtaining the symmetric key $k$ as well as the SHA-256 
hash of the asset ciphertext.

2.	 It downloads the asset ciphertext, computes the 
SHA-256 hash and compares it to the received hash to 
verify the integrity of the asset data.

3.	 It decrypts the asset data using the key $k$.

As with regular text messages, only clients in the same 
conversation can receive asset metadata messages from 
one another and are authorized to download the 
corresponding asset ciphertext.

Assets are persistently stored on the server without a 
predefined timeout. This means that a client can repeatedly 
download and decrypt the same asset to conserve disk 
space on the device, since the client persistently stores the 
decrypted symmetric key $k$ together with the SHA-256 
hash. These credentials have the same sensitivity as the 
plaintext asset itself. Forward secrecy is not affected since the 
decryption key $k$ is sent using the Proteus/MLS protocol.

Link Previews
When users send links, the apps can generate link previews. 
This feature is optional and can be turned off. Link previews 
are generated on the sender’s side only, by fetching 
Open Graph data (that is, a picture and some text) from 
the website behind the link. This data is added to the chat 
message, sent to the recipient, and displayed there. The 
recipient does not make any network requests to the website, 
unless the recipient clicks or taps the link.

Notifications
Messages are delivered by the server to recipients via 
notifications. Notifications are delivered by Wire over 3 
different channels.

Websocket connections: Every authenticated client can 
establish a websocket connection over HTTPS. A client with 
an established websocket connection is considered online.

External push notification providers: Wire currently supports 
FCM and APNs as external push notification providers. This 
channel is used if a client is offline but has registered a valid 
FCM or APNs push token with the server.

Notification queues: Every message sent by a user, as well 
as most metadata messages are enqueued in a per-client 
notification queue that can be queried (and filtered) by every 
registered, authenticated client of a user. The notification 
queue allows clients to retrieve messages they may have 
missed. The retention period of notifications is 4 weeks.

A note on ephemeral messages  
(“Self Deleting” Messages)
Timed messages carry a time-to-live indication, specified 
by the sender. When the receiving client displays the 
message for the first time, it calculates an expiry date based 
on the current time and the provided time-to-live. Based on 
this value the client is able to verify when the time-to-live 
has passed. When this is the case, the receiving client will 
remove the message from the local database.

Ephemeral messaging is not designed as a security feature, 
rather than a convenience to have conversations cleaning 
themselves up on their own. There is no guarantee that 
an ephemeral message will be treated as such on the 
receiving side. It may prevent unauthorized users with 
device access from reading previous messages within a 
conversation when using only the application. However, this 
should not be considered a security feature, as traces of 
those messages may still exist in the client’s local database.

Client-Server Protocol Description  
(Chat Server Protocol)
The API descriptions of previous and the current version can 
be found here.

WebSocket connections
In addition to requests to HTTP resources, every client that 
successfully authenticated with the backend can establish 
a WebSocket connection over HTTPS.

The WebSocket connection is used when the app is in an 
active state and the client has an ongoing connection with 
the backend. A client with an established WebSocket 
connection is considered online. It is used to fetch new 
messages from the notification queue.

Additionally, clients can maintain the WebSocket connection 
even when the app is in an inactive state to receive real-time 
push-notifications from the backend, when push notification 
services from an app environment are not available. The 
WebSocket connection over HTTPS uses the same TLS 
connection as described in section Transport 
Encryption (TLS).

https://ogp.me/
https://staging-nginz-https.zinfra.io/api/swagger-ui
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Calling
Calling in Wire comes in two flavors: one-to-one calls (Section 
1:1 Calls) and conference calls (Section Conference Calls). 
One-to-one calls are calls between two clients, whereas 
conference calls can host more than two clients. Both flavors 
have the same technological foundation and heavily rely on 
WebRTC for media encoding/decoding, encryption and 
media routing. Conference calls use an additional server-side 
component (Selective Forwarding TURN Server) as well 
as an additional encryption method.

Call signaling
All calls are initiated through the end-to-end encrypted 
session. Call signalling parameters to establish a connection 
between Wire endpoints and negotiating their common 
capabilities is done by exchanging SDP messages. In the 
case of conference calls, SDP messages are sent as HTTPS 
messages between a client and a Selective Forwarding 
TURN (SFT) server (see section Selective Forwarding TURN 
Server (SFT)).

Media Transport
Once connected, endpoints determine a transport path for 
the media between them. Whenever possible the endpoints 
allow direct media flow between them, however some 
networks may have a topology (e.g. with firewalls or NATs) 
preventing direct streaming and instead require the media 
to be relayed through a TURN server. 

ICE identifies the most suitable transport path. TURN servers 
are part of the Wire backend infrastructure but are 
standalone components that are not connected to the rest 
of the backend components and therefore do not share data 

with them. They do not know the user-ID of the users that 
use them and act purely as relay servers for media streams.

Clients use generic credentials to authenticate against the 
TURN servers, so that calls are indistinguishable for TURN 
servers. Therefore, TURN servers cannot log identifiable call 
records. TURN servers and the backend only share a 
long-term secret key that is used to symmetrically sign the 
generic credentials used by the clients to authenticate to the 
TURN server.

The credentials are emitted by the backend. They expire 
after 24 hours and need to be refreshed by the clients. The 
TURN server can verify the signature with the long-term 
secret key. The purpose of these credentials is to prevent 
DoS attacks against the TURN server. In the case of a 
conference call, the client starting the conference transmits 
the TURN servers and credentials to the SFT server as SFT 
servers do not have their own connection to the backend.

Call setup
1:1 Calls
The following is an example for setting up a one-to-one 
call with client A calling client B. Client A connects to TURN 
server A and client B to TURN server B. In practice these 
two TURN servers could be the same server. The separation 
was chosen to reflect the fact that the external side of the 
TURN servers connects via UDP. Clients may also directly 
connect via UDP to either other clients that are directly 
reachable or to a TURN server that a client is connected to.

Before a call can be set up, clients need to receive a call 
configuration from their associated backend. This 
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configuration is received when clients come online after they 
were offline for a longer time, and it is frequently refreshed 
while being online. The refresh interval (TTL) can be set on 
the backend and is transmitted to clients in the configuration. 
The configuration contains all available TURN servers, 
credentials to connect to the TURN server, and all available 
transport protocols. TURN servers can be configured to 
allow any combination out of UDP, TCP, and TLS.

They are listening on the following ports:
→	 3478 for UDP
→	 3478 for TCP
→	 5349 for TLS

For conference calls the call configuration also contains URLs 
to SFT servers. To allow for load balancing over multiple 
SFT servers on the backend side, the call configuration is 
refreshed immediately before starting a conference call. 
This way the backend can always distribute SFT servers 
with available capacity for a conference. A typical call 
configuration for one TURN server and all transports, and 
one SFT server received by clients may look like this:

{
“ttl”: 3600,
“ice_servers”: [

{
“urls”: [“turn:turn01.de.somedomain.
com:3478?transport=udp”],
“credential”:”qvt5kHU7vQ5HK6JxihBIFY60fVm8FT-
FiRlv2LKdOJi6LX8yauMoXGSzRY/6MEokaCFerN-
WkbNyYh02ngOXFtgA==”,
“username”:”d=1618436350.v=1.k=0.t=s.r=olgeadtu-
aoxmtkhz”
},
{
“urls”: [“turns:turn01.de.somedomain.
com:5349?transport=tcp”],
“credential”: “QanQMQZvRZwQmojx3D/78lsZZLGw-
bGabqTOREUigf2vihwuSppWMz9PIytkvbBTy-
jDYR21/79coGJ8ZJ/3l9Og==”,
“username”: “d=1618436350.v=1.k=0.t=s.r=ogm-
drqxmirpaiyss”
},
{
“urls”: [“turn:turn01.de.somedomain.
com:3478?transport=tcp”],
“credential”: “e2snEvOH1mWaUgWaYvXG5i53Xy-
mAhJQWxENNLK5GDBoeTnAo8rb9Ne+pfSgG-
16WeyQqHSBVAXbaeZ3kzVWN0NQ==”,
“username”: “d=1618436350.v=1.k=0.t=s.
r=pekwyrmcocpgicqq”
}],

“sft_servers”: [
{
“urls”: [“https://sft01.sft.somedomain.com:443”]
}]

}

Signalling Signalling
E2EE

TURN A TURN B
Media
UDP (port 3478)
TCP (port 3478)
TLS (port 5349)

Media
UDP (port 3478)
TCP (port 3478)
TLS (port 5349)

Client BClient A

FW/NAT FW/NAT

Overview
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In the example client A would receive a call configuration 
from the backend that includes TURN server A in 
combination with UDP, TCP, and TLS transport. On the other 
side, client B would receive a similar call configuration from 
the backend as well that includes TURN server B.

Note that neither client A or B has or requires any knowledge 
about the call configuration on the other side (B or A) at the 
time a call is initiated.

Also note that even though the example above only shows 
one TURN server, for redundancy reasons, there might be 
multiple TURN, and multiple SFT servers provided in the 
configuration.

Signaling flow
When client A sets up a call to client B it contacts all TURN 
servers that were listed in the call configuration, in the 
above example TURN server A, with an allocation request. 
TURN server A then allocates and returns a UDP port on 
the “external” network for client A.

Backend TURN A TURN BClient A Client B

Call configuration request

Call configuration 

Call SETUP response message

Media

IP/Port Tuple

A calls B

Call configuration request

Call configuration 

Allocation request

Call SETUP Message

IP/Port Tuple

Allocation requestB answers
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Client A now is reachable from the outside via the tuple of 
external IP address of TURN server A and the allocated UDP 
port. All data that is sent to this tuple will be forwarded to 
client A.

The next step in the call setup process is to send this 
allocated tuple to client B in a call setup message via an 
E2EE message. When client B receives the setup message 
it will run through the same procedure as client A. Client 
B contacts TURN server B with an allocation request. TURN 
server B then allocates and returns a UDP port on the 
“external” network for client B. Client B at this point is 
reachable from the outside via the tuple of external IP address 
of TURN server B and the allocated UDP port. All data that 
is sent to this tuple will be forwarded to client B. Client B 
sends this tuple to client A in an answer to the call setup 
message from client A via an E2EE message.

Now both clients, client A and client B, run through a 
connectivity check where they try to reach the other client 
on all possible routes. Ways to reach the other client includes 
the TURN allocation, but also local address or server reflexive 
address may be included. In the above example it is 
assumed that both clients reside in networks that are not 
directly reachable from the other side (or want to mask their 
IP addresses). Therefore, a connection from client A will be 
established through TURN server A connecting to TURN 
server B, forwarded to client B. Client B will connect through 
TURN server B to TURN server A, forwarded to client A.

A path between client A and client B has been established, 
and both clients can start streaming media.

Calling in federated environments
A call between two federated participants is not different 
from a call between two participants on the same domain. 
Both participants exchange connection capabilities as E2EE 
messages and setup their connection based on the available 
connection endpoints.

Federated backends may additionally provide TURN servers 
to provide external connectivity.

Conference Calls
This section specifies the end-to-end encryption used for 
Wire’s conference calling. All messages between clients are 
sent with the selected E2EE protocol (section End-to-end 
Encryption) and inherit the security properties accordingly, 
i.e. authenticity and end-to-end encryption. This version 
implements a base-line security that is comparable with 
other end-to-end encrypted conferencing solutions 
today. The goal however is to move to a sframe-based 
solution on top of MLS.

Selective Forwarding TURN Server (SFT)
The SFT is the main component in the conference calling 
architecture. Its job is to gather encrypted streams from 
each client and fan them out to the others over a single 
connection. In order to establish a call, clients initially connect 
to the SFT via HTTPS and exchange connection information 
via SDPs in SETUP messages. Once established, the SFT 
and clients exchange media and data-channel messages 
over UDP. For clients that can not connect directly via UDP 
refer to previous chapters on how clients may use TURN 
servers to connect to the SFT server.

The HTTPS connection between clients and the SFT uses 
the same TLS mechanism and parameters described in 
section [Transport Encryption (TLS)]. In that respect, the SFT 
acts as just another RESTful backend API.

Calling Messages
Wire uses JSON for encoding calling messages. Messages 
are sent via HTTPS post/response, via E2EE session or via 
the data channel between clients and the SFT. Messages 
only relevant for current call participants are sent via targeted 
E2EE messages to clients in the ongoing call (with MLS Wire 
uses an MLS subconversation with ID “conference” to send 
the message to all actively participating clients). The handling 
of the encryption/decryption keys is negotiated on the 
MLS layer.

Encoding
The codec used for streaming is Opus for audio and VP8 
for video. Opus can use variable bit rate encoding (VBR) or 
constant bit rate encoding (CBR).

Conference calls always use CBR encoding.

CBR has the advantage of eliminating potentially undesired 
information about packet length but might have an impact 
on call quality on slow networks. It is sufficient if one of the 
two parties of a call enables the CBR option, CBR will then 
always be used for calls of that user. When CBR is used, the 
calling screen will display “CONSTANT BIT RATE”.

In video calls the CBR option affects the audio streams like 
in audio calls, but the calling screen will not display 
“CONSTANT BIT RATE”.

https://datatracker.ietf.org/wg/sframe/about/
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Encryption
Call media is always exchanged between endpoints in an 
SRTP-encrypted media session. To initiate the session the 
SRTP encryption algorithm, keys, and parameters are 
negotiated through a DTLSv1.2 handshake. The authenticity 
of the clients is also verified during the handshake in the 
following steps:

→	 Each client generates an ephemeral key pair ahead 
of time.

→	 The fingerprint of the public key is sent to the other client 
as part of the SDP message during the initial signalling. 
As mentioned above, signalling messages are 
exchanges over the E2EE session and therefore inherit 
from its authentication properties.

→	 During the DTLS handshake the public keys are 
exchanged between clients (through ServerHello/
ClientHello).

→	 The clients compare the public keys to the fingerprints 
from the SDP.

→	 If they detect a mismatch, the DTLS handshake is 
aborted and no connection is established. The handshake 
procedure utilizes the authenticated key exchange of 
DTLS (and the authenticated E2EE session) to guarantee 
confidentiality and authenticity of call data.

For the DTLS phase, both devices negotiate cipher suites 
similar to a TLS handshake from the following list:

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_
SHA256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_
SHA256

In addition, Wire clients use Encoded Transforms 
(formerly known as Insertable Streams) to end-to-end 
encrypt the content of media packets.

Symmetric cipher
AES256-GCMTRC (used for payload encryption)

Key derivation
HKDF with HMAC-SHA512

Forward secrecy is addressed by the fact that keys are 
rotated every time participants join or leave a call, using the 
E2EE session between the call participants as key transport.

Federation
In a federated environment, backends interact with each 
other. These connections are secured by mutual TLS 
(mTLS). The current MLS based federation implementation 
adds two components to the normal backend setup:

→	 A Federation Server acts as the single point of incoming 
traffic for federated services. This is implemented as 
a part of the Kubernetes nginx ingress service with 
server certificates and mandatory client certificate 
authentication.

→	 A Federator server processes all federation requests 
(incoming and outgoing).

The federation server component only accepts connections 
with client certificates, while the Federator component is 
in possession of a client certificate to present to other 
instances. Conversely, the Federation Server component 
needs a server certificate to authenticate itself to other 
parties. Both components may use the same certificate, if the 
certificate holds both purpose flags (for client authentication 
and server authentication).

The federation server is a part of the Kubernetes nginx 
ingress service with the same cipher configuration as for 
regular TLS connections (see section Transport Encryption 
(TLS)).

The list of acceptable certificate authorities for both 
incoming client certificate verification and for verification 
of server certificates of outgoing connections can be 
configured at backend deployment time in the Kubernetes/
helm chart configuration.

Both default to the system CA store and a verification depth 
of 1, but this can be changed by the backend administrator.

Through Federation, Wire enables users from one domain 
to communicate with users of another domain it federates 
with. Federation uses two different domain names: The 
backend domain and the infrastructure (or infra) domain. 
All references to “domain” without any qualifier refer to the 
backend domain. The backend domain is the user visible 
part of the federation infrastructure. It is used to qualify 
usernames when presented to the user. A qualified 
username in the alpha.org backend domain would be  
@usera@alpha.org.

The infrastructure domain is used for actual communication 
between the backends. The client/server certificates for 
Federator and federation server need to be issued in the 
(subject alternative) name of the infrastructure domain. 
A DNS SRV lookup is used to map from a backend domain 
to its infra domain, for both outgoing connections (where 
the infra domain also needs to be used for address lookup) 
and for incoming connections (where the infra domain in 
the presented client certificate needs to be associated with 
the backend domain that the incoming connection claims 
to represent).

https://w3c.github.io/webrtc-encoded-transform/
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The mutual authentication between the federation 
components assures that all messages passing between 
instances are assigned their correct source and target 
domain names. Within an instance, for all messages relating 
to external domains, the username is qualified with the 
external domain name. The backend administrator can 
configure an allowlist of allowed backend domains. Domains 
can only federate with each other after actively setting up 
the Federation. Administrators are able to configure the 
search policy for a remote backend e.g., so that no users 
are returned by federated searches. Additional information 
on Federation can be found in Wire’s Public Documentation.

Legal Hold
Legal hold introduces a new type of device, named legal 
hold device, for the sake of satisfying corporate compliance 
rules without sacrificing end to end encryption with full 
transparency.

Legal hold device
A legal hold device is a device bound to a team user account 
but managed outside of the user’s control - it is managed by 
the Legal hold service. That is, only team admins can remove 
that device from a user’s account again. The management/
operation of said Legal hold service is of the responsibility of 
the team.

This type of device is visually distinguishable, for full 
transparency, with a clear, constant indication on the client 
UI. There can be only one such device per user account 
and they can only be added to the user’s device list with the 
user’s consent and confirmed with a password prompt (if 
they have one - there can be exceptions such as SSO users).

Legal hold service
This Legal hold service can be provided by the backend, or 
hosted separately at customers’ premises.

Interaction
A team admin may ask members of the team to be put under 
legal hold. Once a person is prompted, they should then 
verify that the presented signature matches the one 
generated by the legal hold service to avoid any potential 
MITM attack.

Once a user accepts the legal hold request, then a device 
is added to that user’s account. This device, also known as 
legal hold device, then receives a copy of each message 
this user sends or receives.

Note that every user talking to someone under legal hold 
(including, of course, the self user) is made aware by means 
of displaying a red dot on the user’s profile.

Further security & cryptography
Transport Encryption (TLS)
For TLS, the same server settings are used for the RESTful 
API, WebSocket connections, Browser sessions or users 
(e.g. Team admin web page), and federation communication 
to remote backends:

The backend only supports TLSv1.2 and TLSv1.3 as well 
as the following ciphersuites:

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384

Cipher suites can be configured for each backend 
individually. The default cipher suites only use cipher suites 
that support Forward Secrecy (FS), to make sure that session 
keys will not be compromised, even if the long-term keys are 
compromised. The server indicates the order preference 
of cipher suites and communicates HTTP Strict Transport 
Security (HSTS) to all HTTPS-clients.

To mitigate man-in-the-middle attacks caused by rogue or 
compromised certificate authorities or caused by undesired 
root certificates installed on the client-side, Wire clients pin 
the public key of the leaf certificates to a set of hard-coded 
values. This means that clients expect the public key of the 
leaf certificate to be a certain value. If this is not the case 
the TLS handshake is aborted, and the connection is never 
initiated. The pinned keys are hard-coded into the binary 
client applications and are used for all outgoing connections 
to the Wire backend, including checks for updates of the 
Webapp in the Wire Desktop application.

On mobile devices, clients use the operating system’s API 
for TLS connections.

The desktop client uses Electron, which is based on 
Chromium that uses BoringSSL as a TLS library.

App Lock
The Wire Client App allows to enable an application lock 
mechanism. This enforces user authentication using the 
methods provided by the underlying platform (biometrics, 
passcode, etc.) to gain access to the app in the same way 
the device itself is unlocked. When this feature is initially 
enabled and no platform-based locking functionality is 
available (e.g. Touch ID on iOS), the client app asks the user 
to set an unlock password.

If “Lock with Passcode” is turned on, the application lock is 
automatically engaged when the Wire Client App is inactive 
for at least 1 minute (configurable by the Team administrator). 
The user then has to enter the unlock password in order 
to further interact with the app again.

https://docs.wire.com/understand/configure-federation.html#applying-all-configuration-changes
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Local storage of backups
Wire client applications have a function to export the 
conversation history (the bulk of all messages, organized in 
different conversations). The choice of generating encrypted 
or unencrypted backups is left to the user. The process 
works as follows:
→	 The user is asked to provide a dedicated backup 

password
→	 The Argon2 memory-hard key derivation function 

(argon2i with 6 iterations and 134 MB memory per 
iteration, with a random salt of 16 bytes) turns the 
user-entered password into an encryption key

→	 The derived key is used to encrypt the backup with 
XChacha20Poly1305

On the application level, backups files contain the user ID 
and can only be imported by the same user who has created 
the backup.

Second factor authentication
Wire backends can be configured to mitigate the impact 
of compromised Wire logins by requiring a second factor 
authentication (2FA) token for important operations:
→	 User login
→	 Registration of a new client
→	 Creation of a new team SCIM token
→	 Deletion of a team

The requirement for 2FA secured authentication can be 
configured to be enforced on the backend level or per team. 
When a client triggers the requests, the backend generates 
a random token (a 6-digit number) for the specific action 
and sends it to the email linked to the user performing the 
action. 2FA tokens are valid for 15 minutes. After providing 
a wrong code the third time, the token will be invalidated 
and can no longer be used to access the account. 
Additionally, a token is only valid for a specific action (login/
client registration or SCIM token creation) for which it was 
requested. 




